Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.480
Filtrar
1.
PeerJ ; 12: e17129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560477

RESUMO

Background: Controlling the substrate moisture is a significant challenge in black soldier fly (BSF) farming. Many substrates have a high moisture content, which results in a low BSF biomass and a high mortality. One potential solution involves incorporating dry substrates into the food mix to mitigate the excessive moisture. However, little information about the types and quantities of dry substrates is available. Methods: Six different dry materials-rice husk (RH), rice bran (RB), rice husk ash (RHA), coconut coir dust (CC), rubberwood sawdust (RSD), and spent coffee grounds (SCGs)-were evaluated by combining with pure minced mixed vegetables in varying proportions (0%, 5%, 10%, 15%, 25%, and 50% by weight). This study encompassed both small-scale and medium-scale experiments to comprehensively assess the effects of the addition of each of these different dry substrates and their quantities on aspects of the development of BSF, such as BSF biomass, larval duration, mortality rates, adult sex ratio, and the moisture removal efficiency of each substrate mixture. Results: Each dry substrate had specific properties. Although RB emerged as a favorable dry substrate owing to its nutritional content and substantial water-holding capacity, excessive use of RB (>15% by weight) resulted in elevated temperatures and subsequent desiccation of the substrate, potentially leading to larval mortality. In contrast, RH demonstrated the ability to support improved larval duration and growth, permitting its utilization in higher proportions (up to 50%). On the other hand, CC, RHA, and SCG are better suited for inclusion in BSF larval substrates in smaller quantities. Discussion: Some dry substrates require a pretreatment process to eliminate toxic substances prior to their incorporation into substrate mixtures, such as CC and SCG. A potential alternative solution involves employing a combination of various dry substrates. This approach aims to enhance the substrate moisture control and subsequently improve the BSF rearing performance.


Assuntos
Ração Animal , Dípteros , Animais , Ração Animal/análise , Larva , Verduras , Café
2.
BMC Res Notes ; 17(1): 98, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561830

RESUMO

INTRODUCTION: Dermatobia hominis belongs to the Cuterebridae family, Diptera order; These flies inhabit tropical regions where they are called "fly of death" since the larvae are capable of causing lesions in domestic animals, wild animals including humans, the adult females of D. hominis capture other dipteran to oviposit their eggs on them (phoresis), when hematophagous mosquitoes land on an animal and / or human in order to feed on their blood, the eggs hatch and the larvae immediately penetrate the skin where they will develop to later abandon the host, then in the soil and / or other moist substrate the pupal stage develops, finally new adult flies will emerge from the pupae. OBJECTIVE: The primary goal of the present study was to determine as first record, the presence of Psorophora ferox infested with eggs of Dermatobia hominis, Peru. METHODOLOGY: The present study was carried out in an area of the private reserve "El Vencedor", located within the city of Pucallpa, Ucayali Region-Perú. The area is characterized by being humid tropical, with an average temperature of 26ºC and humidity of 92%, while the annual precipitation is approximately 1570 mm3. The capture method was carried out with the help of a hand net type "butterfly" or also called Jama. RESULTS: A total of 668 mosquitoes of different species were collected, the most abundant being Psorophora albigenu and Psorophora ferox, which represented 88.72% and the least abundant was Culex coronator and Uranotaenia apicalis with 0.15% of the total sample collected. CONCLUSIONS: Within these specimens it was captured a mosquito of the species Ps. ferox with the presence of 8 eggs of D. hominis, of which 3 would have hatched, while in the remaining 5, the larvae would remain inside the eggs.


Assuntos
Culicidae , Dípteros , Animais , Feminino , Adulto , Humanos , Peru , Larva , Pele , Pupa
3.
Biodivers Data J ; 12: e114414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566888

RESUMO

Background: This study presents the first faunistic record and DNA barcoding for some Diptera species recorded from the Juniperus forest ecosystem of Balochistan, Pakistan. DNA barcoding was used to explore species diversity of Dipterans and collections carried out using a Malaise trap between December 2018 to December 2019. This process involved sequencing the 658 bp Cytochrome Oxidase I (COI) gene. New information: Amongst the collected Diptera specimens, nine families were identified, representing 13 genera. These species include Atherigonasoccata (Rondani, 1871), Atherigonavaria (Schiner, 1868), Chironomusdorsalis (Meigen, 1818), Eupeodescorollae (Linnaeus, 1758), Eristalistenax (Linnaeus,1758), Goniaornata (Meigen, 1826), Luciliasericata (Meigen, 1826), Paragusquadrifasciatus (Linnaeus, 1758), Polleniarudis (Fabricius, 1794), Raviniapernix (Thompson, 1869), Sarcophagadux (Thompson, 1869), Trupaneaamoena (Schiner, 1868) and Wohlfahrtiabella (Linnaeus, 1758). The families Syrphidae and Sarcophagidae exhibited the highest representation, each comprising three genera and three species. They were followed by the family Muscidae, which had a single genus and two species. Anthomyiidae, Chironomidae, Calliphoridae, Polleniidae, Tachinidae and Tephritidae were represented by only one genus and one species. A nique Barcode Index Number (BIN) was allotted to Tachinidae (specie i.e Goniaornata). The results indicated that barcoding through cytochrome oxidase I is an effective approach for the accurate identification and genetic studies of Diptera species. This discovery highlights the significant diversity of this insect order in study region. Furthermore, a comprehensive list of other Diptera species remains elusive because of difficulties in distinguishing them, based on morphology and a lack of professional entomological knowledge.

4.
Plant Biol (Stuttg) ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634401

RESUMO

Most Aristolochiaceae species studied so far are from temperate regions, bearing self-compatible protogynous trap flowers. Although self-incompatibility has been suggested for tropical species, the causes of self-sterility in this family remain unknown. To fill this gap, we studied the pollination of the tropical Aristolochia esperanzae, including the physical and physiological anti-selfing mechanisms. Floral visitors trapped inside flowers were collected to determine the pollinators. Protogyny was characterized by observing the temporal expression of sexual phases and stigmatic receptivity tests. The breeding system was investigated using hand-pollination treatments. Pollen tube growth was observed using epifluorescence to identify the self-incompatibility mechanism. Flies were the most frequent visitors found inside A. esperanzae trap flowers, with individuals from the family Ulidiidae being potential pollinators since they carried pollen. The characteristic flower odour and presence of larvae indicate that A. esperanzae deceives flies through oviposition-site mimicry. Although this species showed incomplete protogyny, stigmatic receptivity decreased during the male phase, avoiding self-pollination. Fruits developed only after cross- and open pollination, indicating that the population is non-autonomous, non-apomictic, and self-sterile. This occurred through a delay in the growth of geitonogamous pollen tubes to the ovary and lower ovule penetration, indicating a late-acting self-incompatibility mechanism. Our findings expand the number of families in which late-acting self-incompatibility has been reported, demonstrating that it is more widespread than previously thought, especially when considering less-studied tropical species among the basal angiosperms.

5.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597910

RESUMO

Larval habitats of blood-feeding stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), overlap with foraging sites of black blow flies, Phormia regina (Meigen) (Diptera: Calliphoridae). We tested the hypothesis that bacteria in blow fly excreta inform oviposition decisions by female stable flies. In laboratory 2-choice bioassays, we offered gravid female stable flies fabric-covered agar plates as oviposition sites that were kept sterile or inoculated with either a blend of 7 bacterial strains isolated from blow fly excreta (7-isolate-blend) or individual bacterial isolates from that blend. The 7-isolate-blend deterred oviposition by female stable flies, as did either of 2 strains of Morganella morganii subsp. sibonii. Conversely, Exiguobacterium sp. and Serratia marcescens each prompted oviposition by flies. The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria could not be physically accessed. Oviposition deterrence caused by semiochemicals of the 7-isolate-blend may help stable flies avoid competition with blow flies. The semiochemicals of bioactive bacterial strains could be developed as trap lures to attract and capture flies and deter their oviposition in select larval habitats.


Assuntos
Morganella , Muscidae , Feminino , Animais , Calliphoridae , Oviposição , Larva , Bactérias , Feromônios
6.
PeerJ ; 12: e17014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426144

RESUMO

Background: The biogeographical and ecological history of true flies (Diptera) in New Zealand is little known due to a scarcity of fossil specimens. Here, we report a fauna of immature aquatic dipterans from freshwater diatomites of the early Miocene Foulden Maar Fossil-Lagerstätte in southern New Zealand. Methods: We document 30 specimens of immature dipterans, mostly pupae, and compare their external morphology to extant aquatic Diptera. Based on the reconstructed paleoenvironment of Foulden Maar, we discuss taxonomic, ecological and taphonomic implications of this early Miocene fauna. Results: Among Chironomidae, one pupal morphotype is attributed to Tanypodinae, one pupal morphotype and one larval morphotype are placed into Chironomus (Chironominae) and a further morphotype into Chironominae incertae sedis. Chaoboridae are represented by a pupal morphotype congeneric or very close to the extant Chaoborus, today globally distributed except for New Zealand. Additional immature specimens are likely larvae and puparia of brachyceran flies but cannot be identified to a narrower range. These finds document an aquatic dipteran fauna in New Zealand in the earliest Miocene and highlight Neogene extinction as a factor in shaping the extant Diptera fauna in New Zealand. Immature aquatic dipterans were a common and likely ecologically important component of the early Miocene Foulden Maar lake. Preservation of larvae and pupae may have been promoted by diatomaceous microbial mats and the light colour of the diatomite likely facilitated spotting of these minute fossils in the field.


Assuntos
Chironomidae , Fósseis , Animais , Nova Zelândia , Larva , Lagos , Pupa
7.
Environ Entomol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483352

RESUMO

The avian vampire fly Philornis downsi (Dodge & Aitken) (Diptera: Muscidae) is native to continental South America and the Caribbean, but invasive in the Galapagos Archipelago. The larvae of P. downsi feed on the blood and tissues of the nestlings of 75% of the small land bird species that are endemic or native to Galapagos, causing high in-nest mortality and severe population declines in some species. Efficient trapping techniques are vital to safeguarding these birds in the short term as well as for monitoring fly populations, but basic information about the ecology of the fly is still needed to help develop a species-appropriate trapping method. In this study, we used a novel trapping regime with a vertical distribution to make inferences about P. downsi's behavioral and spatial ecology and to optimize trap catch. Our results showed that male and female P. downsi were trapped in greater numbers below the canopy (3.1-7.5 m), lower down than other commonly caught insect species (5.1-11.5 m). Notably, the effect of trap height remained consistent across seasons and different weather conditions. These findings suggest that P. downsi tend to move at heights where their hosts nest (at or below the canopy) and do not spend time above the canopy. This also makes it unlikely that strategies such as hill-topping or aerial swarming are being used to locate mates. As such, trapping and control efforts should be focused below the canopy in forests with similar canopy heights to effectively capture P. downsi and reduce bycatch of other insects.

8.
J Med Entomol ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493302

RESUMO

This study aimed to explore the rate of decomposition of rabbit carcasses and the succession pattern of the associated dipteran flies outdoor, indoor, and on the roof of a 4-story building during the summer and winter. A total of 6,069 flies were recorded, with 30.91% reported as 2 waves outdoor and on the roof in the summer and 69.09% as 4 waves outdoor in the winter. The roof showed the most flies in the summer but the least in the winter, whereas the outdoor showed the most in the winter but the least in the summer. The ground and first floors showed the most indoor flies, while the second and third floors showed the least in both seasons. Indoor carcasses decomposed slower than those outdoor, and those on the second and third floors decomposed slower than those on the ground and first floors. Ten fly species from 8 families were identified in the winter, compared to 6 from 5 families in the summer. The most abundant species was Musca domestica Linnaeus (Muscidae) on the roof in the summer, while it was Chrysomya albiceps (Wiedemannn) (Calliphoridae) outdoor in the winter. The rare species (singletons) were Musca sp. (Muscidae) and Megaselia scalaris (Loew) (Phoridae) on the first floor in both seasons, Scaptomyza pallida (Zetterstedt) (Drosophilidae) on the ground floor in the summer, and Atherigona orientalis Schiner (Muscidae) outdoor in the winter. These data highlight the variance in carcass decomposition and fly composition across outdoor, indoor, and the roof of human dwellings, which could be of forensic importance.

10.
Curr Biol ; 34(8): 1762-1771.e3, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521062

RESUMO

Amber preserves an exceptional record of tiny, soft-bodied organisms and chemical environmental signatures, elucidating the evolution of arthropod lineages and the diversity, ecology, and biogeochemistry of ancient ecosystems. However, globally, fossiliferous amber deposits are rare in the latest Cretaceous and surrounding the Cretaceous-Paleogene (K-Pg) mass extinction.1,2,3,4,5 This faunal gap limits our understanding of arthropod diversity and survival across the extinction boundary.2,6 Contrasting hypotheses propose that arthropods were either relatively unaffected by the K-Pg extinction or experienced a steady decline in diversity before the extinction event followed by rapid diversification in the Cenozoic.2,6 These hypotheses are primarily based on arthropod feeding traces on fossil leaves and time-calibrated molecular phylogenies, not direct observation of the fossil record.2,7 Here, we report a diverse amber assemblage from the Late Cretaceous (67.04 ± 0.16 Ma) of the Big Muddy Badlands, Canada. The new deposit fills a critical 16-million-year gap in the arthropod fossil record spanning the K-Pg mass extinction. Seven arthropod orders and at least 11 insect families have been recovered, making the Big Muddy amber deposit the most diverse arthropod assemblage near the K-Pg extinction. Amber chemistry and stable isotopes suggest the amber was produced by coniferous (Cupressaceae) trees in a subtropical swamp near remnants of the Western Interior Seaway. The unexpected abundance of ants from extant families and the virtual absence of arthropods from common, exclusively Cretaceous families suggests that Big Muddy amber may represent a yet unsampled Late Cretaceous environment and provides evidence of a faunal transition before the end of the Cretaceous.


Assuntos
Âmbar , Artrópodes , Extinção Biológica , Fósseis , Fósseis/anatomia & histologia , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Evolução Biológica , Biodiversidade , Canadá
11.
Biodivers Data J ; 12: e117265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501073

RESUMO

Background: Hoverflies are among the most important insect pollinators and there is documented evidence of a recent decline in their populations. To trace the past distributions of hoverfly species, verified records of historical collections are essential. New information: Here, we provide data on 1071 specimens of hoverflies collected or received by Jean Timon-David and hosted at the Marseille Natural History Museum, France. Most of the specimens were collected by Timon-David himself and come from south-eastern France, mainly from the Departments of Bouches-du-Rhône, Var and Hautes-Alpes. Most of these specimens were checked for the accuracy of their identification according to the latest identification keys. This resulted in 85 additions to the known fauna of the French Departments, mostly for Var and Bouches-du-Rhône. The taxonomy of all specimens was checked against the latest available checklists and updated names added whenever necessary. Specimens received from entomologists working in other continents may also be valuable, as these are historic testimonies of the fauna of their own respective regions of origin and may, therefore, also be used as reference material. One paratype specimen from Australia is present in the collection. The holotype of Cheilosia vangaveri Timon-David, 1937 is absent from the collection and should be considered as lost. All but two of the specimens with locality labels had their geographical coordinates of origin added in the dataset.

12.
Insects ; 15(2)2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38392542

RESUMO

Are parasitoids less likely to find their Lepidoptera hosts on non-native hostplants than native hostplants? We predicted that with longer periods of coevolution between herbivores and the plants they consume, the parasitoids that provide top-down control would be more attuned to finding their hosts on native plants. To test this hypothesis, we collected immature stages of sulfur butterflies (the cloudless sulfur (Phoebis sennae) and the orange-barred sulfur (Phoebis agarithe) over a three-year period (2008-2011) from native and ornamental hostplants in the genus Senna in three different parts of the urban landscape of Miami, Florida, USA. We reared the immature specimens to pupation and either eclosion of adults or emergence of parasitoids and compared the levels of parasitization among the three areas, and among native vs. exotic hostplants. We found, contrary to our prediction, that caterpillars feeding on non-native leguminous hostplant species were more likely to be parasitized than those feeding on native hostplants. We discuss this surprising finding in the light of recent findings in other plant/herbivore/parasitoid systems.

13.
Front Physiol ; 15: 1263475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304114

RESUMO

The Manchineel, Hippomane mancinella ("Death Apple Tree") is one of the most toxic fruits worldwide and nevertheless is the host plant of the monophagous fruit fly species Anastrepha acris (Diptera: Tephritidae). Here we aimed at elucidating the detoxification mechanisms in larvae of A. acris reared on a diet enriched with the toxic fruit (6% lyophilizate) through comparative transcriptomics. We compared the performance of A. acris larvae with that of the sister species A. ludens, a highly polyphagous pest species that is unable to infest H. mancinella in nature. The transcriptional alterations in A. ludens were significantly greater than in A. acris. We mainly found two resistance mechanisms in both species: structural, activating cuticle protein biosynthesis (chitin-binding proteins likely reducing permeability to toxic compounds in the intestine), and metabolic, triggering biosynthesis of serine proteases and xenobiotic metabolism activation by glutathione-S-transferases and cytochrome P450 oxidoreductase. Some cuticle proteins and serine proteases were not orthologous between both species, suggesting that in A. acris, a structural resistance mechanism has been selected allowing specialization to the highly toxic host plant. Our results represent a nice example of how two phylogenetically close species diverged over recent evolutionary time related to resistance mechanisms to plant secondary metabolites.

14.
G3 (Bethesda) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301265

RESUMO

The West Indian fruit fly, Anastrepha obliqua, is a major pest of mango in Central and South America and attacks more than 60 species of host fruits. To support current genetic and genomic research on A. obliqua, we sequenced the genome using high-fidelity long-read sequencing. This resulted in a highly contiguous contig assembly with 90% of the genome in 10 contigs. The contig assembly was placed in a chromosomal context using synteny with a closely related species, Anastrepha ludens, as both are members of the Anastrepha fraterculus group. The resulting assembly represents the five autosomes and the X chromosome which represents 95.9% of the genome, and 199 unplaced contigs representing the remaining 4.1%. Orthology analysis across the structural annotation sets of high quality tephritid genomes demonstrates the gene annotations are robust, and identified genes unique to Anastrepha species that may help define their pestiferous nature that can be used as a starting point for comparative genomics. This genome assembly represents the first of this species and will serve as a foundation for future genetic and genomic research in support of its management as an agricultural pest.


Assuntos
Tephritidae , Animais , Tephritidae/genética , Especificidade da Espécie , Drosophila , Frutas , Cromossomo X
15.
Life (Basel) ; 14(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398777

RESUMO

The Siberian moth, Dendrolimus sibiricus Tschetv., 1908 (Lepidoptera: Lasiocampidae) is a conifer pest that causes unprecedented forest mortality in Northern Asia, leading to enormous ecological and economic losses. This is the first study summarizing data on the parasitoid diversity and parasitism of this pest over the last 118 years (1905-2022). Based on 860 specimens of freshly reared and archival parasitoids, 16 species from two orders (Hymenoptera and Diptera) were identified morphologically and/or with the use of DNA barcoding. For all of them, data on distribution and hosts and images of parasitoid adults are provided. Among them, the braconid species, Meteorus versicolor (Wesmael, 1835), was documented as a parasitoid of D. sibiricus for the first time. The eastern Palaearctic form, Aleiodes esenbeckii (Hartig, 1838) dendrolimi (Matsumura, 1926), status nov., was resurrected from synonymy as a valid subspecies, and a key for its differentiation from the western Palaearctic subspecies Aleiodes esenbeckii ssp. esenbecki is provided. DNA barcodes of 11 parasitoid species from Siberia, i.e., nine hymenopterans and two dipterans, represented novel records and can be used for accurate molecular genetic identification of species. An exhaustive checklist of parasitoids accounting for 93 species associated with D. sibirisus in northern Asia was compiled. Finally, the literature and original data on parasitism in D. sibiricus populations for the last 83 years (1940-2022) were analysed taking into account the pest population dynamics (i.e., growth, outbreak, decline, and depression phases). A gradual time-lagged increase in egg and pupal parasitism in D. sibiricus populations was detected, with a peak in the pest decline phase. According to long-term observations, the following species are able to cause significant mortality of D. sibiricus in Northern Asia: the hymenopteran egg parasitoids Telenomus tetratomus and Ooencyrtus pinicolus; the larval parasitoids Aleiodes esenbeckii sp. dendrolimi, Cotesia spp., and Glyptapanteles liparidis; and the dipteran pupal parasitoids Masicera sphingivora, Tachina sp., and Blepharipa sp. Their potential should be further explored in order to develop biocontrol programs for this important forest pest.

16.
Plant Biol (Stuttg) ; 26(2): 166-180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38196297

RESUMO

Specialized pollination systems frequently match a particular set of floral characteristics. Vincetoxicum spp. (Apocynaceae, Asclepiadoideae) have disk-shaped flowers with open access to rewards and reproductive organs. Flowers with these traits are usually associated with generalized pollination. However, the highly modified androecium and gynoecium that characterize asclepiads are thought to be associated with specialized pollinators. In V. sangyojarniae, we investigated floral biology, pollination, and the degree of pollinator specialization in two localities in Thailand. We examined floral traits that target legitimate pollinators. Flowers of V. sangyojarniae opened only at night, emitted floral scents containing mainly (E)-ß-ocimene, 1-octen-3-ol, (E)-4,8-dimethyl-1,3,7-nonatriene (E-DMNT) and N-(3-methylbutyl)acetamide, and provided sucrose-dominated nectar openly to insect visitors. Assessment of pollinator effectiveness indicated that V. sangyojarniae is functionally specialized for pollination by cecidomyiid flies. Although various insects, particularly cockroaches, frequently visited flowers, they did not carry pollinaria. Our results suggest that V. sangyojarniae attracts its fly pollinators by emitting floral volatiles bearing olfactory notes associated with the presence of fungi or, less likely, of prey captured by predatory arthropods (food sources of its pollinators) but offers a nectar reward upon insect arrival. Hence, there is a mismatch between the advertisement and the actual reward. Our results also suggest that the size of floral parts constitutes a mechanical filter where reciprocal fit between flower and insect structures ensures that only suitable pollinators can extract the pollinaria, a prerequisite for successful pollination.


Assuntos
Apocynaceae , Dípteros , Vincetoxicum , Animais , Polinização , Néctar de Plantas , Insetos , Flores
17.
MethodsX ; 12: 102523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38179068

RESUMO

Insect pathogenic fungi (IPF) and insects have ubiquitous interactions in nature. The extent of these interkingdom host-pathogen interactions are both complex and diverse. Some IPF, notably of the order Entomophthorales, manipulate their species-specific host before death. The fungus-induced altered insect behaviours are sequential and can accurately be repeatedly characterised temporally, making them a valuable model for understanding the molecular and chemical underpinnings of behaviour and host-pathogen co-evolutionary biology. Here, we present methods for the isolation and laboratory culturing of the emerging behaviourally manipulating model IPF Entomophthora muscae for experimentation.•E. muscae isolation and culturing in vitro.•Establishing and maintaining an E. muscae culture in vivo in houseflies (Musca domestica).•Controlled E. muscae infections for virulence experiments and quantification of conidia discharge per cadaver.

18.
J Plant Res ; 137(2): 191-201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206495

RESUMO

Many wetland plants rely on insects for pollination. However, studies examining pollinator communities in wetlands remain limited. Some studies conducted in large wetlands (> 10 ha) have suggested that wetland-dependent flies, which spend their larval stage in aquatic and semi-aquatic habitats, dominate as pollinators. However, smaller wetlands surrounded by secondary forests are more prevalent in Japan, in which pollinators from the surrounding environment might be important. Additionally, information regarding floral traits that attract specific pollinator groups in wetland communities is scarce. Therefore, this study aimed to understand the characteristics of insect pollinators in a small natural wetland (2.5 ha) in Japan. We examined the major pollinator groups visiting 34 plant species and explored the relationship between the flower visitation frequency of each pollinator group and floral traits. Overall, flies were the most dominant pollinators (42%), followed by bees and wasps (33%). Cluster analysis indicated that fly-dominated plants were the most abundant among 14 of the 34 target plant species. However, 85% of the hoverflies, the most abundant flies, and 82% of the bees were non-wetland-dependent species, suggesting that these terrestrial species likely originated from the surrounding environment. Therefore, pollinators from the surrounding environment would be important in small natural wetlands. Flies tend to visit open and white/yellow flowers, whereas bees tended to visit tube-shaped flowers, as in forest and grassland ecosystems. The dominance of flies in small wetlands would be due to the dominance of flowers preferred by flies (e.g., yellow/white flowers) rather than because of their larval habitats.


Assuntos
Dípteros , Ecossistema , Abelhas , Animais , Áreas Alagadas , Japão , Plantas , Polinização , Larva , Flores
19.
Ecology ; 105(1): e4204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926440

RESUMO

Cities can have profound impacts on ecosystems, yet our understanding of these impacts is currently limited. First, the effects of the socioeconomic dimensions of human society are often overlooked. Second, correlative analyses are common, limiting our causal understanding of mechanisms. Third, most research has focused on terrestrial systems, ignoring aquatic systems that also provide important ecosystem services. Here we compare the effects of human population density and low-income prevalence on the macroinvertebrate communities and ecosystem processes within water-filled artificial tree holes. We hypothesized that these human demographic variables would affect tree holes in different ways via changes in temperature, water nutrients, and the local tree hole environment. We recruited community scientists across Greater Vancouver (Canada) to provide host trees and tend 50 tree holes over 14 weeks of colonization. We quantified tree hole ecosystems in terms of aquatic invertebrates, litter decomposition, and chlorophyll a (chl a). We compiled potential explanatory variables from field measurements, satellite images, or census databases. Using structural equation models, we showed that invertebrate abundance was affected by low-income prevalence but not human population density. This was driven by cosmopolitan species of Ceratopogonidae (Diptera) with known associations to anthropogenic containers. Invertebrate diversity and abundance were also affected by environmental factors, such as temperature, elevation, water nutrients, litter quantity, and exposure. By contrast, invertebrate biomass, chl a, and litter decomposition were not affected by any measured variables. In summary, this study shows that some urban ecosystems can be largely unaffected by human population density. Our study also demonstrates the potential of using artificial tree holes as a standardized, replicated habitat for studying urbanization. Finally, by combining community science and urban ecology, we were able to involve our local community in this pandemic research pivot.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Cidades , Clorofila A , Invertebrados , Árvores , Insetos , Água
20.
J Med Entomol ; 61(2): 400-409, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38157316

RESUMO

Necrophagous Diptera are the most important group of insects used for the purposes of forensic entomology. While the most utilized fly family in this context is the family Calliphoridae, there are several other families that can be of great importance during real-case investigations. This article analyzes the necrophagous flies of all families recorded from 160 real cases in Switzerland between 1993 and 2007. A total of 56 species belonging to 16 families was identified with Calliphoridae being the most dominant family (90.63% of all cases), followed by Muscidae (26.25%), Sarcophagidae (19.38%), Phoridae (14.38%), and Fanniidae (12.50%). For specimens that were difficult to identify morphologically, a new PCR primer has been specifically designed for the amplification of a short, informative COI barcode in degraded museum samples of forensically important Diptera taxa. The richest family in terms of species was the family Muscidae with 16 species. Fannia fuscula (Fallen) and Fannia monilis (Haliday) were recorded from human cadavers for the first time. The study highlights the importance of different fly families in forensic investigation, enhancing our comprehension of their prevalence and dispersion in real cases in Central Europe. The results pave the way for additional exploration, especially regarding the involvement of less frequently observed species in forensic entomology.


Assuntos
Dípteros , Muscidae , Sarcofagídeos , Humanos , Animais , Suíça , Entomologia , Calliphoridae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA